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R E S I S T A N C E  O F  A S P H E R E  I N  A S L O W  F L O W  O F  A 

V I S C O E L A S T I C  F L U I D  

S. V. Vasil'chenko and B. M. Mukhin UDC 532.135 

The authors have obtained an approximate solution of the problem of the resistance of a rigid sphere in a 

s low/ low of a Maxwell  viscoelastic fluid that is in good agreement with experimental data [1] -for 

Weissenberg numbers We < O. 7. It is shown that the effect of a decrease in the coefficient of resistance of 

a sphere in the interval O. 1 <_ ICe <_ O. 7 established experimentally is determined in -full measure by the 

linear viscoelastic properties of the Maxwell -fluid. 

In [1 ], the sedimentation of single spherical particles in solutions of Separan AR-30 polyacrylamide in a 

glucose syrup was investigated for Reynolds numbers 1.69-10 - s  < Re < 8.1-10 -2 and Weissenberg numbers 

1.66" 10 -4 < We < 2.02, where Re = 2V®rp/# and We = V,~l/r. It was shown that the experimental values of the 

coefficient of resistance of a sphere obey the dependence 

C t = 24Re-t Xe,  

where the parameter Xe = 1 for We < 0.1, while in the interval 0.1 _< We < 0.7, Xe decreases monotonically, 

attaining the constant value Xe = 0.74 for We > 0.7. 
For the experiment, we selected fluids that have nearly linear viscoelastic properties. However, as the 

authors of [1 ] note, the existing theoretical solutions of the problem of the resistance of a sphere in a flow of a 

linear viscoelastic fluid do not predict any significant effect of a decrease in the coefficient of resistance. Thus, in 

the experiment with ReWe -- 0.0498 and We = 1.817, Xe = 0.74 is obtained, while according to the calculations of 

the authors of [1 ], the known analysis of Airman and Denn [2 ] predicts the minimum value Xe --- 0.958 for ReWe 

< 0.05. On this basis, in [I ], the conclusion of the impossibility of obtaining an adequate solution without using 

the theory of nonlinear viscoelasticity is made. 

Employing an approximate method of analysis, we show that the presented experimental results [1 ] can 

be described rather accurately within the framework of the theory of linear viscoelasticity for We _< 0.7. 

We consider a slow steady-state unbounded flow of a Maxwell viscoelastic fluid about a rigid sphere. By 

the steadiness of the flow we will mean the invariability of the field of fluid velocities with time. 
Directing the principal axis of the spherical system of coordinates (R, 0, ~o) with the pole at the center of 

the sphere parallel to the vector of the nniform-flow velocity at infinity g** and assuming by virtue of the axial 

symmetry of the flow (V~, -~ 0) and the incompressibility of the fluid the existence of a Stokes stream function, we 

write the expression for it known for the case of flow about a sphere [3 ]: 

~p=~V~,  sin20 - 2  + 1  , 0 < 0 < z .  

From Eq. (1) we find expressions for the components of the fluid velocity as 

3 

VR-- R 2sin0 00 2 
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VO = R sin O OR = -4 V*o sin O + 3  - 4  . ( 3 )  

Using (2)and (3), we find the tangential component of the tensor of the rates of deformat ion on the surface 

of the sphere  [4 1 

= = - ~ s i n  0 ( 4 )  
(0) m ~ - ~  -k - ~ - - ~  -- l¢, J R=r k OR ) R=r 

By virtue of the steadiness of the velocity field the trajectory of the motion of. the fluid particles coincides 

everywhere with the streamlines [4 ]. This  enables us, considering the time of particle flow about  the sphere  to be 

a parameter ,  to write Eq. (4) in the form 

3v** 
i' ( t )  = --  2---7- s i n  (cot), (5) 

O = o J t ,  O < c o t - < n .  (6) 

Using the formal validity of arbi trar i ly prescribing function (6), we will consider co = const as a first approximation.  

Then  the  expression for co is found from the condition coT = ~r, where T is the t ime during which a fluid particle 

experiences deformation in flow about  the sphere. T h e  magnitude of T cannot be established analytical ly and  must 

be determined from the condition of the best approximation of the sought solution of the problem to exper iment .  

Writing the rheological equation of state of the Maxwell fluid for the tangential  component  of the stress 

tensor 

we find under  the initial condition 3(0) = 0 

dr 
r + , l  ~ = rr/,, 

r ( t )  = ~ - e x p  - f ) ( t ) e x p  d t .  
0 

Substituting expression (5) into solution (7) and computing the integral, we obtain 

3~ W col 

<,o 2 + o,2) 
[co cos (cot) - col sin (cot) - co exp ( -  COlt ) ] 

or  

( t )  = 

r ( 0 ) -  2 c o s 0 - c o  t s i n 0 - c o e x p  - - - 0  , 
n (o,2 + ~ol) co 

(7) 

( 8 )  

where w I -- 1/2.  
Using expressions (5) and (8) and  considering the Maxwell fluid to be a viscous fluid with the effective 

viscosi ty/ , (0 = r(O)/$,(O), we adopt the pressure distribution in the flow disturbed by the sphere  by analogy with 

the Stokes solution [4 ] 

for R = r 

P (R, O) = -- 3--ttrV,o cosO 
2 R2 + Pop , 
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Fig. I. Data of the experiment [I ] and theoretical dependence (13) of Xe on 

We (Xe and We are dimensionless). 

3 cos 0 + p** 
P ( O ) = - 2  luV** r (9) 

Multiplying 3(0) and  P(O) by the area of the e lementary  annula r  surface of the  sphere  2.~r 2 sin OdO and  

projecting the e lementary  forces obtained onto the direction of the velocity V**, we write the force of resis tance of 

the sphere to the incoming flow in the form [4 ] 

F = f ( -  r (0) sin 0 - ? (0) cos 0) 2~ r 2 sin OdO. ( I0)  
0 

Substituting expressions (8) and (9) into Eq. (10), we obtain 

F = 6~ ~lrV** 
1 + 0.5 ( to/tol)  2 [1 - exp ( -  n tol / to)  ] 

1 + ( to/tol)  2 

( l l )  

Taking the time of deformation of a fluid particle to be T = 2r/V**, we have 

,rv** (12) 
t o -  2r 

Then ,  allowing for the fact that We = 2V~,/r--  2xo/mol,  from (11) we obtain the following dependence  of 

the force of resistance of the sphere on the Weissenberg number:  

F (We) = 6n rirV® 
I + 0.5 (~ W e / 2 )  2 [1 - exp ( -  2 / We )  l 

1 + (~ W e / 2 )  2 

We find the coefficient of resistance of the sphere as 

= e ( W e )  
1 2 Cf ~ p V2** ~rr 

= 2 4  Xe (We) ,  Xe (We) = 
Re 

I + 0.5 (~ W e / 2 )  2 I 1 - exp ( -  2 / We )  ] 

1 + (~r W e / 2 )  2 
(13) 

The  curve calculated by formula (13) describes well the experimental  data with We < 0.7 (see Fig. 1). The  

choice of expressions for to that are not the same as (12) affects the accuracy of describing the experimental  data  

by the theoretical curve in the interval 0 -< We _< 0.7 but does not make it possible to obtain its flat branch for We 

> 0.7 (see Fig. 1). This means that the assumption of a Stokes distribution of velocities and pressure in the 

sphere-dis turbed flow adopted in this work is, apparently,  valid only for We _< 0.7. 

In summary ,  we note that, within the above limits of applicability, the solution found describes in full 

measure the decrease  in the coefficient of resistance of a sphere in the interval 0.1 < We < 0.7 and establishes the 

effect as being due  to the l inear viscoelastic properties of a Maxwell fluid. 
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N O T A T I O N  

V®, velocity of the flow at infinity (the velocity of the sphere in the motionless fluid); ),, sphere radius; p, 
fluid density; r/, viscosity; ~l, relaxation time; i', rate of deformation; t, time; w, angular velocity of the polar radius 

of a fluid particle; r, tangential stress. 
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